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in a semiclassical representation of the Sehrodinger propagator K ( t ,  s , z ,  y). For a 
spinless quantum system whose Hamiltonian i s  a smaolh p i l i o n -  and momentum- 
dependent perturbation of the Laplacian in Qd. exponential cluster expansions for K 
are obtained. These formally exact solulions to the timedependent Schrijdinger equation 
employ explicit graphically-determined derivalives of the Hamiltonian's symbol, integrated 
along geodesics. For the special case of panicles interacting with external electromagnetic 
fields, the propagator's gauge invariant derivative expansion coefficients are determined 
in closed form in te rm of the Larentz farce. A tree graph formula for Hamiilois 
principal function is extracted from this result. 

1. Introduction 

In this paper, exponential connected graph representations of the quantum propagator 
K( 1 ,  s, z, y)  are obtained for Hamiltonians containing an arbitrary position- and 
momentum-dependent potential term. This includes the case of systems interacting 
with time-dependent external electromagnetic fields, and extends previous results 
[l-31 which assumed only position-dependent potentials u ( z , t ) .  A new method of 
derivation is employed, which directly integrates the transport equation [4,5] obtained 
after a suitable leading-order approximation for I< has been factored out. The results 

asymptotic propagator expansions. 
e!!idert!y p:c'ide exp!icit fcrEXl!2e fer the ...e!!icieE!s ef mPpertcrb2tive fc"! 

?he specific type of quantum transport equation to be studied has the form 

h 
V,F(t,X) = AH (t,z,Tvz) F(1 , z )  (1.1) -. a F  

at t - s  
- ( t , z ) + z - - y  lh 

for a so;uiion r" : Ri 2 ij soughi, io a suiia'j;e hitiai 
condition. The quantity R(t ,  I, (h/i)Vz) represents an arbitrary linear partial differ- 
ential operator, 2rrh is Planck's constant, and s E R, y E Rd appear as parameters. 

Transport equations of the form (1.1) can arise in quantum mechanics in the 
following basic way. Let U ( t , s )  be the unitary operator-valued solution of the 
Schriidinger initial value problem 

d 
d t  

i h - U ( t , s )  = H ( t ) U ( t , s )  

U ( s , s )  = I d  (1.2) 
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4914 F H Molzahn 

describing quantum time evolution in the Hilbert space LZ(Wd).  Let K (  1 ,  s, x,  y)  = 
( z l U ( t , s ) l y )  denote the integral kernel of U ( 1 , s )  which is also called the propaga- 
tor. For a wide variety of quantum systems, the physical Hamiltonian operator H ( t )  
arises in the form 

H ( 1 )  = Ho + V(1) Ho  = -$&’U. (1.3) 

The ‘free Hamiltonian’ Ho is some constant multiple of the Laplace-Beltrami oper- 
ator U on (flat) Etd, while V(1)  is a possibly 1-dependent ‘perturbation’. 

When, the Hamiltonian has the decomposition (1.3), one natural option is to seek 
a correspbnding factored form for the propagator: 

(1.4) K ( t , s , x , v )  = ~ ~ , ( ~ , s , x ,  y )F(t , s ,x ,  U). 

Here KO represents the free propagator corresponding to H,. Since KO has a well- 
known closed form (see (3.56)), the quantity of interest then becomes the so-called 
‘configuration function’ F(t , s ,x ,y ) .  If (1.4) is substituted into (1.20) one finds that 
a transport equation of the type. (1.1) is obeyed by F. The operator fi in (1.1) will be 
called the ‘ersatz Hamiltonian’; it is generally different from the physical Hamiltonian 
H ( 1 ) .  An initial condition for F is similarly induced from (1.26). The initial time s 
and configuration y. upon which F depends parametrically, are seen to originate in 
the Cauchy initial condition for Schrodinger’s equation. 

If the right-hand side of (1.1) were not to contain derivatives of F, then (1.1) 
would appear as a first-order quasi-linear partial differential equation (PDE). An 
elementary technique-the method of characteristics [6, 714s  available to solve such 
a PDE. This method maintains much usefulness for transport equation (1.1) because, 
upon introduction of the characteristic curves 

x - y  
1 - 5  

i ( r )  = 7 x(7) = y + ( 7  - s)- 

the left-hand side of (1.1) assumes the form of the total derivative dF(T,x(T)dT. 
After integration from s to 1 an integro-differential equation is obtained for F, 

1 ‘  
~ ( t , z )  = ~ ( s , y )  + J drf i  F ( r , z ( r ) ) .  (1.6) 

In section 2, the formal iterative solution of (1.6) is carried out in full. It should 
be emphasized that the solution thus obtained is not simply an infinite series of time- 
ordered N-dimensional integrals, with integrands containing N factors of H. Such 
a result, while correct, would be a perturbative expansion in fi that is difficult to 
compute with in general and of limited practical value. The analysis to be presented 
is carried well beyond that stage. It is shown that the configuration function F admits 
an exponential representation 

(1.7) 

in which the coefficient functions Lj(l, s , x , y )  are determined in closed form by a 
summation over simple connected graphs (clusters) on j vertices. Each summand is 
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a parametric integral of derivatives of a product of j symbols of the operator H. 
This symbol f i ( t , z , p )  is a function of both the configuration z and a momentum 
variable p ,  and the graph-determined derivative structure employs differentiation with 
respect to both of these ‘classical phase space’ variables. 

These results are valid for an ersatz Hamiltonian of a general form. In section 3, 
as a first application, they are specialized to the case of a quantum system with 
external electromagnetic fields, i.e. interactions described by arbitraly smooth time- 
dependent vector and scalar potentials, a ( z ,  t )  and v ( z , t ) .  In this case it is possible 
to base the calculation upon a gauge-invariant transport equation, which results when 
the propagator’s U ( 1 )  gauge dependence is factored out in addition to the free 
propagator. 

The result is a gauge-covariant exponential cluster expansion for the propagator. 
This extends to systems with electromagnetic fields; there are kindred results in the 
literature l1-31 that deal only with scalar potentials. Somewhat remarkab!?; the results 
for the general problem, as presented in section 3, are in many ways structurally 
simpler and more convenient than previous cluster expansions. One of these features 
is whether the Lj are automatically the coefficients of a gauge invariant derivative 
expansion [S ,  91. Furthermore, since the metric for Rd defining U may have an 
indefinite signature, the results also apply to the Schwinger-DeWitt equation [lo-121 
of special-relativistic scalar field theory. 

A second application of the cluster method for transport equations is made in 
section 4. There, Hamiltonians of the form (1.3) are considered for a general perturb 
ing operator V(1) .  Corresponding to the propagator factorization (1.4), the ersatz 
Hamiltonian k retains terms arising both from WO and V ( t ) .  It is shown that the 
cluster expansion can be ‘resummed’ by computing explicitly all the effects of the 
H,-originating part of fi. The result is again an exponentiated expansion like (1.7). 
but with the coefficients L, now defined using protlucts of the symbol of perturbation 
V ( t ) .  The derivative structure associated with the clusters is modified by the re- 
summation. This result not only provides a non-perturbative (infinite order in V(2))  
cluster expansion, but also proves consistency of the present methods with the recent 
results of Barvinsky and Osborn (131. 

Conclusions, comparison with the literature, and remarks concerning possible 
generalizations of this work, and its expected range of utility, are collected in section 5. 
The appendix proves a general integrand-symmetry theorem, which plays an essential 
role in deriving the exponential representation (1.7), as well as a useful role in 
simplifying the formulae for the coefficients L j .  

The detailed calculations in this paper are ‘exact’ in the sense that no approxima- 
tion, such as neglecting certain terms, occurs. However, no attempt is made to justify 

pansions are at least asymptotic, with validity for sufficiently short time displacements. 
They are intended to reveal the analytic and combinatorial structure present in the 
propagator. Different methods [14, 15) from those employed here would be needed 
to determine rigorous asymptotic error bounds and domains of validity. 

the resu!ts in a mat!!emat.im!!y rigorous fashion, It is assumed the forma! series ew- 

2. Cluster method for a general transport equation 

In this section a relatively generic transport equation is analysed. An exponential 
cluster representation is derivcd for the equation’s solution. This result provides 
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the basis for the more specific applications which will follow in sections 3 and 4. 
Accordingly, only interpretive remarks of a more general nature will be made about 
the cluster solution here. 

Consider the linear transport PDE 

for the smooth function F ( .  , s, . , y )  : R x Rd --* C, which is subject to the initial 
condition 

F ( ~ , ~ , - Y , Y )  = 1 (2.lb) 

for some fixed initial time s E B and coordinate y E Bd, upon which F depends 
parametrically. In (2 .1~)  aF is the partial derivative of F with respect to its first 
scalar (‘time’) argument, and similarly V denotes differentiation of F with respect to 
its first lRd-vector (‘spatial’) argument. The ersatz Hamiltonian H in (2.la) is allowed 
to be a general formal partial differential operator, 

where Wd is the usual space of d-component multi-indies (W denotes the non- 
negative integers). Our derivations will assume that the complex coefficients 
a = ( t ,  s ,  z, y )  are smooth functions of z. In (2.2~) fi is, for convenience and with- 
out loss of generality, assumed to be written in ‘normal-ordered‘ form. That is, all 
gradient operators stand to the right of the z-dependence in a,. Associated with this 
form of presenting fi is its symbol [16] 

a function of the phase space variables [z, p )  E Rd x (Wd)’, the * indicating the dual 
space. In (2.2) the multi-index summation need not be finite: the powers p a  may be 
replaced by (suitably analytic) functions of p, whereby fi becomes a pseudodifferential 
operator. In what follows, however, the partial differential operator notation will be 
employed because this provides the most succinct way of expressing the results. 

The method of formal solution for transport problem (2.1), which results in an 
exponential cluster formula for F, has a number of basic stages. First, a variable 
substitution based on the method of characteristics is employed to turn (2.10) into 
an ODE, which integrates into an integral equation for F. This integral equation is 
then iterated to produce an infinite series of time-ordered integrals. By introducing 
appropriately symmetric integrands, the time-ordering restrictions may be removed. 
In this form the series can be exponentiated by graph-combinatorial techniques which 
yield the desired cluster expansion. 

Proceeding now with the first of these steps, introduce the characteristic curve 
q : R - + E d ,  
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Here Q is an abbreviation for the standard argument list ( t , s , z , y ) .  Evidently q is 
the linear path running from y to z during the time interval [ s , t ] ,  

4 s )  = Y n(t) = (2.4) 

with constant velocity G ( T )  = (z - y)/(t - s). Accordingly, if throughout (2.la) t is 
replaced with T and subsequently z with q ( r ) ,  one obtains the ODE along q: 

Integration of this equation, subject to (2. lb) and observing (2.4), results in the basic 
integral equation (1.6) obeyed by F. It is useful to display this equation after the 
integration variable T E [ s , t ]  has been scaled to the unit interval by the variable 
change T = to = s + <At, where A t  E 1 - s and F E [0,1]. The integral equation 
then reads 

Here y t  denotes the unit-intefval parametrized geodesic from y to z in Rd which 
arises from (2.3), 

YF=Y(E;z ,Y)=q(Fo)=  y+F("-Y) .  (2.6) 

Observe that Eo = r([; t ,  s), in W'. 
The next stage of derivation, in which (2.5) is iterated, is perhaps the most delicate, 

and novel, stage. It is crucial to keep a careful account of where the derivatives V 
in (2.5) act after successive iterations are performed. As is evident from (2.5), a 
formula representing an arbitrary spatial derivative of F, evaluated on the spacetime 
geodesic path (C',y(), is required. Begin by computing such a derivative at ( t , z ) ,  
by differentiating (2.5) with respect to z. For any multi-index a E Wd one has 

where 6u,a is the Kronecker delta. Notice that the z-dependence of the {. . .) inte- 
grand here arises only through y(X; z, y), given as in (2.6). 

Let D be the differential operator acting on the first spatial argument of ff, just 
as V does on F. Then the chain and product rules imply 

(2.7) 

VFF(Q) = 60,0 + iti J dXXl"l(D+V)*# X o , s , y X , y , r V  F(Xo , s ,yX,y ) .  
I ( 7 At ' 

0 

The required formula is obtained once (2.7) is evaluated on the geodesic by replacing 
t - Eo and z -+ yt; In doing this, the following geodesic composition laws are used 
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They follow at once from (2.6). Also note that the A t  factor outside the integral 
in (2.7) becomes replaced by (At. A final change of integration variable from X to 
0 = XE results in 

Let us iterate once by inserting (2.8) into (2.5). In doing so it is convenient to 
introduce the abbreviations [ E ]  = ( E ' ,  s , 7 t ,  y) and [ F , p ]  = ( [ E ] , p )  for the geode& 
evaluated argument lists which occur. The first iterate of (2.5) in this notation is then 

Notice how the part of the iteration which replaces F with the constant 1 eliminates 
the derivative in H ,  as in the single-integral term. In the double-integral term of (2.9), 
the subscript 2 on D2 indicates that this gradient acts only on f I (~" , , s , . , y , (h / i ) ) .  

The pattern of computation needed to  obtain an arbitrary iterate emerges if one 
considers replacing F[Ez] in (2.9) by using (2.8) again. Then the double-integral term 
of (2.9) splits into two new terms. The first is again the double-integral term with F 
set to 1 and hence both V set to 0. The second new term is the ordered triple-integral 

It arises after the V operators appearing in (2.9) are replaced by (Es/E2)(D3 + V) 
due to (2.8). Notice, in the . ]  symbol, how the E, factors multiplying D, cancel; 
this kind of behaviour will be seen later to  be critical in allowing the cluster method 
to work. 

It should now be evident how an arbitrary iterate is formed. In stating this 
general result, it is helpful to use the following notation for the N-dimensional 
hyper-triangular domains which form the time-ordered integration regions, 

Q ~ ~ I E E I O , l l N I 1 > , E ~ > , E z > , ~ . ~ B E ~ > , O I .  (2.10) 

The infinite series obtained by repeated iteration of (2.5) as described above is then 

Here the product is implicitly ordered so that factors appear from left to right 
with increasing index j = 1 , 2 , .  . . , N .  The gradient D ,  acts on the lth factor 
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f i ( E o , , s , . , y , p )  only. The N = 0 term in (2.11) is defined to be 1, and similarly 
in the j = N factor, one takes E;,,, E 0. While the discussion leading to (2.11) 
has relied on inspecting the first few iterates, an inductive argument can be used to  
establish the same result. 

In order to continue with the formal analysis of (2.11). assume that the symbol 
fi is an entire function of p admitting a (global) ny lor  series representation in the 
form 

& ( Q , p )  = eP‘”fi(Q,O) 

where 6 is the gradient on the momentum argument, [ f i f i ] ( Q , p )  = V , f i ( Q , p ) .  
If similarly Cj is the momentum gradient acting on the factor f i [ F j ,  .] in (2.11), then 
this 7hvlor ‘shift’ formula allows all the differential operators to be Eathered into an 
exponential factor, away from the symbols upon which they act, 

Notice that the &dependent function ( , / E j  which ‘couples’ the operator D, to 6j 
only depends on those indices, 1 and j. This is a consequence of the type of cancella- 
tion observed for Fz earlier. Also, the fact that D, does not couple to 5, (i.e. spatial 
derivatives do not act on their own symbol in (2.11)) is a consequence of choosing to 
write the ersatz Hamiltonian in normal-ordered form at the outset in (2 .k) .  

The final preparatory step that remains to be taken with (2.12) is to convert 
the ordered E-integrai into a simpie iterated integrai over tne unit N-cube. Tiis is 
facilitated by introducing an appropriate symmetrized extension of the integrand. Tb 
this end, notice that the derivative coupling (E,/Ej)D,. Ej only occurs with j < 1. 
But since E Q L ,  
one may substitute 

E Q;, the inequality j < 1 implies F j  (,. Thus, for almost all 

,. E E -  
E j  € 1  

I D , .  Dj = O ( j  < l ) l D , .  fij + O ( j  > l)’Dj. 6, 
E F .  - = @(Ej > E r ) l D I .  Ej + O ( ( ,  > E . ) l D . .  D, 

= Sj,,(E). (2.13) 

Here O ( P )  is the Heaviside function with value 1 if the proposition P is true, 
and value 0 if P is false. The ‘link operator’ Sj,,(E), defined by (2.13) for ali 
j ,  1 = 1 , 2 , .  . . , N and E [0, 1IN, is a symmetric function of j , l  which vanishes 
when j = 1, 

E ,  

/? ,”, 
,L.‘*, 

When (2.13) is used within the integrand of (2.12), it may be shown (see the 
E I N ,  Z 5 [0,1]. 

c I C \ - , ?  a .  .\<, - ”. ,e\ ~ c1 ,e\ 
Sj,,{<) = Jl , j151 313 

appendix) that the resulting integrand is a symmetric function of 
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Consequently, the integration may be carried out over all of I N  with a compensating 
factor of l / N ! .  The final 'pre-cluster' form of the result is therefore 

(2.15) 

In the form presented by (2.19, the representation of F is now ready for standard 
cluster exponentiation methods to be applied. A careful exposition of this method 
is found in section 3 of (21; also, compare (2.15) above with (2.11)-(2.14) of that 
reference. The structure of (2.15) is similar to that found in the cluster expansion of 
the classical grand partition function in statistical mechanics [17]. The product n,,, 
is analogous to a product of e-'jZlkT over pairs (j? 1 )  of particles interacting via po- 
tential U,]. The interval I plays the role of the configuration space for each statistical 
particle. Thus, (2.15) may be restructured by a graph combinatorial argument parallel 
to that given in [21. The result is an exponential representation, 

(2.16) 

in which the coefficient functions L j  are determined by a graphical summation as 
follow. 

Let C, denote the set of all simple connected graphs [MI (or 'clusters') which may 
be formed on the vertex set 7 I {1,2,. . . , j ) .  Thus C E C, means C = (5, E), 
where the edge set E of C consists of distinct unordered pairs p of distinct integers 
111 2, ,,rmu,g a W , , I I * C L C "  gray,,. " l l l n l r  a glaylLLca, aYIIIIIIaLI".I UJ 
. -  ." .. I:",,:"" ,. ",.""a t̂nrl ,..""l. nnfi..- " "r0"L:""l r........nt:n" I... 

(2.17) 

that is a sum over all j-vertex clusters accompanied by a sum over a link integer Ip  2 1 
for each edge E E. Let r denote the sum of the link integers: r = EPEE Ip  (or 
r = 0 if E = 0). The sums CI,)l in (2.17) originate in a power series representation 
of the quantity -1 + e x p ( ( h / i ) S p ( c ) ) ,  where the link operator Sk,,(C) associated 
with a link p = {k, 1) is denoted Sg(c) (unambiguously so, due to the symmetry 
(2.14)). With this notation, the cluster sum formula for coefficient L j  is 

(2.18) 

It is possible to make one further practical simplification to (2.18). If the cluster sum 
CO is taken inside the integral then one can show (again see the appendix) that 
the resulting integrand is a symmetric function of e. Hence the integral may be recast 
into ordered form; i.e. (2.18) is valid with, for example, the replacement 

(2.19) 
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Such a form is more suitable for actual L j  coefficient calculation, because in an 
ordered region such as Q: the selection of maximum and minimum components of 
E is trivial and so the formula (2.13) for Sg(c)  reduces to a single term. 

The exponential cluster representation (2.16)-(2.18) of the solution to the trans- 
port problem (2.1) is the main result of this section. It provides an exact formal 
expression for F in terms of parametric integrals, along geodesics, of the symbol 
H and its derivatives. The symbols represent vertices of connected graphs, whose 
edges carry simple differential operators coupling pairs of symbols. Notice that the 
graphs describing this derivative structure contain no loops, i.e. link operators of the 
form S,, j(c) do not appear. This feature at first appears remarkably simple, because 
previous graphical propagator expansions [l-31 have ahvays contained such loop con- 
tributions. In section 4 it will be seen how these two varieties of graph expansion are 
indeed consistent. 

3. Gauge-covariant electromagnetic propagator 

This section applies the results of section 2 to the specific case of the Schrodinger 
time evolution kernel (propagator) of a quantum system with electromagnetic fields. 
The cluster representation for this problem is found to have a number of beneficial 
features, which are discussed in detail. These features include: (i) the ability to rep- 
resent the expansion coefficients in manifestly gauge-invariant form; (ii) a significant 
simplification in the graphical summation-caused in part by collapse of the infinite 
link integer sums to their first two terms; and (iii) the automatic organization of ex- 
pansion (2.16) as a gauge-invariant derivative [ S ,  91 expansion. Explicit formulae for 
the first two coefficients L, and L2 are considered. By examining the h-dependence of 
the propagator and its WKB representation, a new tree graph formula for Hamilton's 
principal function with electromagnetic fields is extracted. 

The quantum mechanical system to be studied here consists of spinless particles 
with a (collective) configuration space W d  having coordinate I. The particles' inter- 
action with external electromagnetic and other forces is described by time-dependent 
covector and scalar fields a ( z , t )  and U(=, 1) .  It is supposed Wd is supplied with a 
flat semi-Riemannian metric tensor, whose components in the given coordinates are 
g i j .  Thus g = [ g i j ]  is a symmetric z-independent non-singular d x d real matrix. 
Its inverse is denoted by g-' = [ g ' j ] ,  as is customary. The quantum evolution is 
governed by the time-dependent Schrodinger equation (cf (1.b)) 

a .  ih - -K( t , s ,z ,y)  = H at 

where the physical Hamiltonian is the partial differential operator 

dependent upon a scaling parameter c > 0. The angle-bracket notation (,) and 
( )2  will he used to denote scalar products involving either the metric matrix or its 
inverse. Thus for vectors U, U E Rd, (.U) U .  gu = u i g i j d ,  while for covectors 
w,X E (Rd)' the notation means (wX) w .  g-'A = w i g i J X j .  The square ( )2  
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is used for either inner product when both arguments are the same. In (3.2) for 
example, ( (h / i )v  - a)z  = ( ( h / i v )  - a )  . g-’(h/iV - a). 

The quantum system (3.1)-(3.2) actually encompasses two very different spheres 
of physical application. In the first case, the metric is strictly Riemannian (positive 
definite)-typically g is the unit matrix. Then the SchrOdinger equation (3.1) describes 
non-relativistic particles of common mass E-’ subject to external electromagnetic 
fields. In the second application, the metric is indefinite, for example Minkowskian. 
Then (3.1) becomes the hyperbolic Schwinger-DeWitt equation [10-12] for a special- 
relativistic scalar field if one chooses a and ZI to be &independent and E = 2. In 
this second case, 1 is a non-physical evolution parameter called the ‘proper time’ (the 
physical time is absorbed into z), and all electromagnetic effects are confined to the 
4-vector potential a( . ) .  The treatment to follow will not distinguish between these 
two fields of application, although the language used will tend to be that appropriate 
to the non-relativistic case. 

For the Schrodinger equation (3.1), let us seek to compute the fundamental 
solution (the propagator) defined by imposing the delta-function initial condition (cf 
(1.26)) 

I i m K ( t , s , z , y )  i - d  = Ide tg l  -1/26( z - y) y E iRd (3.3) 

at some k e d  time s E R. (The g-dependent normalization in (3.3) is that appropriate 
in the Lz Hilbert space defined by the natural volume measure d V  = I det gl’/’ddz 
of the semi-Riemannian manifold i Rd,  g +.) In particular, we shall find a gauge- 
covariant representation for IC which is a semiclassical asymptotic expansion as E 1 0. 

Recall the well-known U(  1) gauge behaviour of the propagator. If A : Rd XR -+ liB 
is the generator of a gauge transformation to new potentials ii = a+VA, Z, = Z I - ~ A ,  
then the propagator K for the gauge-transformed Schrodinger equation is related to 
the original K by 

( t , s , z ,  y)eA(Y+)Iin. (3.4) K ( i , s ,  z, y) = e -A(z, t ) / ih  li- 

An ansatz for IC which explicitly incorporates both the initial condition (3.3) and the 
gauge behaviour (3.4) is the factorization 

= 0 e J / i h T  (3.5~) 

where KO is the propagator for the free Hamiltonian .$((h/i)V)’ = -?E~’O,  

K Q ( Q )  E 12a~hAli-~/~exp(-i(a/4)sign(At g)exp  (3.56) 

and the gauge-phase function J is defined by the following path average of the 
potential fields 

(3.k) 

along the geodesic ?((; z, y) of (2.6). In (3.5b). the sign denotes the signature of a 
matrix (the number of positive minus the number of negative eigenvalues). 
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The salient features of the three factors in (3.5a) are as follows. The function 
KO is obviously gauge-invariant, and obeys the delta-function condition (3.3) on its 
own. The gauge factor eJIifi has the value 1 when t = s and t = y, and as a simple 
calculation shows, it completely provides the gauge behaviour (3.4) of the propagator. 
Therefore the residual factor T should (i) be gauge-invariant and (ii) satisfy the initial 
condition 

T ( S , S , Y , Y )  = 1. (3.6) 

Function T is the quantity of interest, since it contains most of the information about 
the quantum effects of the physical forces acting. 

It is the function T which (in the role of F) satisfies a transport equation of 
the type (2.la).  Thus (3.6) corresponds to (2.lb). The specific form of the transport 
equation obeyed by T is found by substituting (3.5a) into the SchrOdinger equation 
(3.1). In this computation, a number of terms cancel, in part due to the transport 
PDE which J obeys 

1 
At 

I- y V J  = U(2,t) - -(t- y ) .  a ( t , t ) .  a J ( Q )  + -. 
t - s  

(For a proof of this identity, see lemma 2 of [SI.) The consequent transport equation 
thus found to hold for T is 

8 T ( Q ) +  -. = - U  t - s  V T  = 5 lli (i ( f V 7  - ( A ( Q ) ,  ! V )  + 
(3.7) 

The coefficient function A( Q )  appearing on the right-hand side of (3.7) is the gauge- 
invariant covector 

A ( Q )  3 a ( t , t )  + V J ( Q )  = - A t  dEER(E) (3.8) l 
where R is the classical Lorentz force 

(3 .94  
0 ( x - y l k  nj(C) = Rj(E;Q)  E Ej(7E,Eo) + q k ( Y < r <  ) at 

expressed in terms of the ‘electric’ and ‘magnetic’ fields 

E = -Vv - a a  F.  J k  = V . a  I k - V k a j .  (3.96) 

The last equality in (3.8) follows by differentiating ( 3 5 )  with respect to x and 
integrating one of the terms by parts. One might regard (3.7) as a gauge-invariant 
version of the Schrodinger equation in which free motion has also been factored out. 
T ,  like IC, is not an element of Hilbert space. 

The residual function T is determined as the solution to the transport problem 
(3.6)-(3.7), which is stated only with reference to gauge-invariant quantities. This 
implies the anticipated gauge-invariance of T. Clearly, the transport equation (3.7) 
takes on the form (2.10) if the following ersatz Hamiltonian symbol is employed 

~ ~ F , , ~ ( Q , P )  (+(P)’ - ( A ( Q ) , P )  + ; [ (A) ’+  ih(V,A)I) .  (3.10) 
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This symbol has contributions arising from both the free Hamiltonian and from the 
potentials. 

With this identification of fi, the results (2.18)-(2.19) may be applied at once. 
In doing so, it is useful to extract the overall e factor in fi. That is, the fact that 
fi&,+ = ~ f i , , ~  and that L j  scales like j factors of fi leads to  the exponential cluster 
representation for T: 

(3.iioj -I - \  

Combined with (3.5), equation (3~11) provides a gauge-covariant duster expansion 
for the propagator of a quantum system with arbitrary smooth vector and scalar 
potentials. In a sense, this is the central result of this section, although its properties 
will be examined closely in what follows. 

Notice that all the e-dependence of L j  resides in the explicit factor e', because 
the link operators So and the symbols fih,i are e-independent (By contrast, fib,] 
will generally contain further h and At dependence.) This means that (3.11~~) is an 
exponentiated e 1 0 formal asymptotic expansion. In the non-relativistic context, this 
is the large-mass limit responsible for the Wigner-Kirkwood semiclassical expansion 
(19, ZO]. This type of propagator expansion has been studied in [ZO], and generalized 
to curved semi-Riemannian manifolds in [9]. However these references relied on 
recursive techniques for computing the e' coefficient functions. While such recursive 
techniques do have a wide range of applicability, nevertheless, within the flat-space 
setting considered here iormuia (3.iibj cieariy is a more powerhi dosed-form soiu- 
tion, which provides each L j  without reference to previous coefficients. 

In continuing to  examine the properties of (3.11b), it is relevant to make a num- 
ber of general observations concerning simplification and specialization of the graph 
structure. The cluster sum Cpj in (3.11b) explicitly involves (cf (2.17)) summation 
over all simple - connected graphs on j vertices. However, due to the special forms of 
LllC "y"L"v1 ,In a,," luln v p , a L Y '  so, ,I w111 "C D C C l l  L u a l  'L'""J "L L l l r  LC.111ID 111 LE 
actually do no; contribute. 

Clearly each symbol f i i , , , [ F k , O ]  is formally associated with a labelled vertex: @ 
Because of the ordered integration region Q,? chosen in (3.11b), the link operators 
in (2.13) reduce to a single term 

*La ".,...I.,., U -"A 1:"L c :+ ... :I1 ha +I."* ...".... ,.+-.La *'.,....- :" P 

- 
-p \ , /  c ~ ( c 1 -  - vP_nvg. - A P  n , F C ~ ?  -6,. (3.12) 

( A P  

Here Ap and v p  denote the minimum and maximum elements, respectively, of the 
unordered pair (edge) p. The formal expression on the right-hand side of (3.12) 
is not a symmetric function of (Ap,Vp) .  It should therefore be associated with a 
directed edge, or urc, denoted by -. Let us agree that the arrowed end of the 
arc represents the  momentum eradient GA9; while the unadorned end of the arc 
represents the spatial gradient DvP. Thus, arcs will always point from a vertex with 
larger label to one with smaller label, e.g. 

@----a (3.13) 



Clusfer solufions IO trunsporf equalions 4925 

It is therefore seen that a direcfed graph, or digraph [18, 211, structure will be naturally 
imposed on top of each cluster. 

'hrn now to the implications of formula (3.10) for symbol ffh,' in the electro- 
magnetic case. Evidently fib,' is a quadratic function of p .  whose leading term $(p)' 
is free of r-dependence. Moreover, as formula (3.11b) shows, after all appropri- 
ate derivatives of the symbol are computed, variable p is set to 0. Consequently, 
each vertex (symbol) in a digraph supports ul mosl two momentum gradients. One 
can distinguish vertices on this basis: a vertex k is said to be of type-n (n 2 0 )  if 
its momentum-incidence is n, i.e. if exactly TI of the edges p incident to k satisfy 
Ap = k. Figure 1 shows a digraph with three vertices of type-0 (no. 3, 5, 6), and 
single vertices of type-1 (no. 4), type-2 (no. 2) and type-3 (no. 1). The contribution 
of this digraph to L ,  will be 0 because of vertex no. 1. 

Figure 1. A simple digraph. 

More specifically, the algebraic content of the various vertex types is as follows. 

qpe-0. Since a cluster is connected, type4 vertices represent at least one spatial 
(D) derivative of +[(A)' + iti(V, A)] whenever there are edges (i.e. j 2 2). 

vpe-1. These vertices support any number (including 0) of spatial derivatives of 
-g-'A. 

Type-2. These vertices contribute only if they are nof struck by spatial derivatives, 
because +(p)' is r-independent. In this case, a type-2 vertex just leads to an inner 
product (metric contraction) of the spatial derivatives associated with the two vertices 
to which it is adjacent (cf figure 2). 

Figure 2. Contraclion at a non-zero type-2 vertex 

Type-n 2 3. Any digraph containing this type of vertex is ignorable in the sense 
that it contributes 0. As figure 1 shows, this type of vertex can occur after the edges 
of the underlying cluster are directed. 

A very significant simplification is implied by these observations. Recall that the 
cluster sum Cpj also entails infinite sums over a link integer I p  2 1 for each edge p 
in a cluster. The effects of these integers are confined to the expressions (cf (3.11b), 
(3.12)) 
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which may be interpreted as yielding digraphs with multiple arcs from vp to A@. 
In this sense, if 1, 2 3 vertex AP will be at least of type-3 and so that term will 
contribute 0. Thus each infinite link integer sum collapses to a finite sum, E;@=,. 
Moreover, the 1, = 2 contributions are trivial since vertex Ap is then at least of 
type-2 (it could he of higher type due to edges other than p). It follows that formula 
(3.11b) for L,( Q) involves only afinife number of terms. 

This discussion outlines the general restrictions and simplifications which are ob- 
served when computing the t-expansion coefficients L, .  A brief illustrative example 
is to obtain explicit formulae for the first hvo coefficients. 

For j = 1, the only cluster on one vertex is the trivial one with an empty edge 
set. Thus (3.11b) gives 

When j = 2 there is only one cluster; the associated digraph is the one displayed 
in (3.13). If 2 = 1{1,21 is the link integer, then from (3.11b) 

The required derivatives of fih,i are readily computed from (3.10), and the resulting 
formula for L, is 

+ (A[C], V) (V ,  A) [ A] + $ ( V j  Ak [XIV; A, [XI t (A,  OA) [XI) } . 
(3.15) 

Formulae (3.14)-(3.15) express L ,  and L ,  in terms of the non-local gauge- 
invariant covector potential A, which is, in turn, a weighted integral average, (3.8), 
of the Lorentz force. If the appropriate derivatives of (3.8) are substituted into these 
formulae it is possible to simplify them further by explicitly performing some of the 
iterated integrals. The resulting expressions will not be displayed here because they 
may be found in [2O], where they were computed recursively. The general structure 
which emerges is that each t j  coefficient is a finite sum in ascending powers of h, 

2 t  

(3.16) 

The author has verified that the G: and G: computed from (3.14)-(3.15) are in 
complete agreement with the corresponding formulae in section 1V of [20]. This 
provides a good check on the present graphical method. 

Another observation worth making concerns the behaviour of (3.11) for the free 
problem, where a and U, hence A, are all 0. In this case one must find that each 
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L,  = 0 so that T = 1. The way that this happens, however, is not entirely trivial 
because H = ( p ) * / Z  # 0 when A = 0. If j 3 2, at least one vertex (namely j )  in 
each cluster will always be struck by a spatial gradient, implying L j  = 0. For j = 1 
there are no arcs to carry a D, but (3.11b) requires setting p = 0 in I?, so L ,  = 0 
too. 

As a final application of the cluster representation (3.11). a formula for Hamilton’s 
principal function S ( t , s , z , y )  will be extracted from it. This is done by compar- 
ing the cluster expansion with the WKB approximation [5, 22-24] of the quantum 
propagator. The short-time WKB (h LO) ansatz is 

where the principal function, or ‘action’, S is defined as the integral of the Lagrangian 
along the (assumed unique) classical interacting path from y ,  s to z, 1. 

Comparing (3.14) with (3.5) and (3.11) suggests that S should equal minus the 
coefficient of (ih)-’ in the exponentiated part of the propagator. Thus the action 
has a free portion (2 - y ) ’ / 2 ~ A t ,  a gauge-dependent term -J(Q), and finally an 
infinite series of contributions coming from each L j ,  specifically -eJG{(Q) in the 
notation of (3.16). 

Formulae (3.10) and (3.11b) make it easy to identify the latter contributions. Since 
a connected graph on j vertices must have at least j - 1 links 0, and each link integer 
Ip 2 1, thus the sum of link integers T 3 j - 1. But is a linear polynomial in 
ti, so (3.11b) implies that ti-’ can only occur if T = j - 1. This happens if and only 
if: the cluster is a tree (minimally connected) graph, all la = ,l, and h is set to 0 in 
the symbol. The consequent constluctive series for the action is 

(3.18) 

where I ,  is the set of all tree graphs T = (5, E ) .  
Of course the WKB comparison argument above only guarantees that (3.18) is 

a plausible conjecture. It remains to establish that the resulting series converges 
under suitable hypotheses, that it is a complete integral (251 of the Hamilton-Jacobi 
equation, etc. This more complete analysis is outside the present scope, but it should 
be mentioned that the validity of tree graph series for actions of systems with scalar 
potentials v(z, t )  have been rigorously established [26, 271. 

4. A resummation of the expansion 

A more general quantum system than the electromagnetic one is considered in this 
section. For a Hamiltonian which is an arbitrary perturbation of a Laplace-Beltrami 
operator in R d ,  the transport equation for the ratio, F, of the interacting and free 
propagators is found. While the results of section 2 could then be applied at once, 
instead, an alternative cluster expansion for F is derived here by summing all the 
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contributions of the free Hamiltonian. This alternative expansion is in agreement 
with the recent results of Barvinslq and Osborn [13]. 

Let the physical Hamiltonian be decomposed into the free-plus-perturbative form 
(1.3). For definiteness, suppose that the perturbing operator has been presented in 
normal-ordered form, 

with the corresponding symbol 

u( t , z ,p )  = Ld ddaij(t, z,a)exp((i/t i)a.  p ) .  (4.2) 

Here a Fourier representation bas been employed, instead of a summation of multi- 
indexed powers of p, for future convenience, 

Consider the propagator factorization (1.4) with KO again given by (3.56). (Note 
that, for the problem at hand without gauge fields, a factorization like (3.5a) is not 
appropriate. Similarly the symbol v(t, z , p )  should not be confused with the scalar 
potential v(z , t )  of section 3.) The first goal is to derive the transport equation 
obeyed by configuration function F. In particular the normal-ordered symbol of the 
ersatz Hamiltonian must be determined. The analogous step in section 3 was much 
easier. Because of the simple quadratic nature of Hamiltonian (3.2), the normal 
ordering could be carried out 'by hand'. 

If the ansatz (1.4) is substituted into the Schrodinger PDE (3.11), (4.1) and the 
indicated derivatives are computed, one arrives at the following transport equation 
for F ( t , s , x , y ) ,  

Equation (4.3) is not yet in a form to which the results of section 2 are immediately 
applicable, because the operator on the right-hand side.is not in normal-ordered form. 
Specifically, there is z-dependence in K o ( Q )  to the right of gradients in U (which 
act on KO and F). 

However, it is possible to 'pull KO through' to the left of U using an appropriate 
operator identity. By employing the explicit formula (3.56) for KO one computes the 
following commutation rule: for CY E W d  and any smooth F 

The la1 individual factors comprising (. . .)" on the right-hand side may be written in 
any order-just as they may for V" on the left-hand side. Note that the componenI3 
of V may act on the IS in any g(z - y) term to their right, as well as on F. Thus, 
(4.4) is still not normal-ordered, but it does allow expressing the K;'vK0 operator 
in (4.3) as 
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where (4.2) was used. It is now a simple matter to normal-order (4.5) by using the 
basic Baker-Campbell-Hausdorff formula [28] 

eA+B = e-[AjBl/2eAeB (4.6) 

in which A = ( i / h r A t ) a .  g(z - y) and B E a .  V, and the commutator is a multiple 
of the identity: [ A , B ]  = (iheAt)-'(a)2. Thus the normal-ordered form of (4.5) is 

where w has the symbol 

Once again, fi acts on the second vector argument of v .  Formula (4.8) shows that 
the symbol w which expresses K;'vK0 in normal-ordered syntax is, in general, 
a complicated derivative of the original symbol U ,  has two sources of 2- and t- 
dependence, and depends upon the other parameters h, E, y, s coming from KO. 

With (4.8) the transport problem for F has been brought to the standard form 
(2.1), with the ersatz Hamiltonian 

(4 .9~)  

(4.9b) 

Note that now H is not simply proponional to E, as it was in the gauge-invariant 
electromagnetic application of section 3. 

If the results of section 2 were applied to this transport problem, an exponentiated 
cluster solution relative to would result. Our objective here, however, will be to 
effect the resummation of all contributions arising from K(p) in (4.9), to obtain the 
cluster solution relative to perturbation w (or, via (4.8), relative to U). It  is very 
natural, from a computational perspective, to seek such a resummation. For, as was 
seen in section 3, the effects of the $ ~ ( p ) ~  terms are trivial in that for vertices of 
type-2 they give a contraction of spatial gradients associated with adjacent vertices, 
cf figure 2. (If the +expansion for the electromagnetic case is the desired expansion, 
then a resummation should not be carried out.) 

A convenient starting point for the resummation calculation is the following slight 
modification of (2.15). 

Here the double product has been taken over the unrestricted square &' x 8 with 
the aid of (2.14). The [. . .] operator in (4.10) may be expressed as the exponential 
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of a double sum. If (2.13) is substituted and this sum is indexed so that each 6 has 
subscript IC, then one finds 

(4.11) 

The critical step is now to split the momentum gradient 6 up into a term 
which 6(k) which acts on the 'kinetic' portion K ( p )  of ( 4 9 ,  plus a term 

acts on w(Q,p). Thus 

f i k = D k  -(') + E("') k k E N = {1,2 ,..., N } .  (4.12) 

Conceptually, decomposition (4.12) is a natural extension of the idea behind the 
operators D ,  and E k :  and E("') are differential operators acting only on 
specific arguments of an appropriate multi-variable function 

When (4 .9~)  is substituted into (4.10) the product of symbols fi can be grouped 
into 'powers' of the perturbation w as follows 

(4.13) 

Here CJCs is the sum over all Z N  subsets J of N, including 0 and N. The 
complement of J is J c  = N \ J. ICk(0 )  is the kinetic function (4.96) originating 
in & [ E k , O ] .  Of course ICk(0) should not be replaced by 0 since I ( ,  is first struck 
by derivatives fir'. Specifically if (4.11)-(4.12) are also now substituted into (4.10) 
then the 6r) part of (4.11) acts as a Tiylor-shift taking the argument of K k  from 0 
to the {. . .} of (4.11). The result of these substitutions and observations is 

A number of simplifications of (4.14) are now possible. Note that D, and 6p) 
can only act on w[E,,O] where j E J c .  Thus the corresponding sums over 1 and k 
in ji' may be restricted to Jc .  Once that is done, it is seen that the N-dimensional 
integral in (4.14) can be 'factored' into two integrals, over the components of 
indexed by J and Jc .  The integral over E must be done inside the E J c  integration: 

(4.15) 
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where IJI is the cardinality of J ,  and G is the onedimensional fixed endpoint Green 
function defined by 

G( t , t ' )  E min tc ,C l (max{ t , t ' }  - 1). (4.16) 

The result of these manipulations of (4.14) (together with relabelling of the re- 
maining integration variables F J c  as E,,  n = N - IJI) is 

(4.17) 

Here the superscript (w) on D k  has been dropped; is now the new momentum 
derivative which acts on w(Q, .). 

The next stage of calculation is to complete the exponentiation of the Green 
function dependent operator which appears under way in (4.17). ?b this end note 
that the sum over subsets J can be organized as 

N c=c  c 
JcN n = O  IJI=N-n 

Obviously each term with a given n in (4.17) is identical. Thus the sum over J with 
IJI = N - n may be replaced by the number of terms in that sum, which is (f). 
Upon interchanging the remaining sums over N and n in (4.17) and manipulating 
the summand straightfonvardly, the previously mentioned exponentiation is found to 
occur. The result is 

N=Q 

(4.18) 

Here S,,,(c) arises as in (4.11), and is defined as in (2.13), but it now acts on the 
y1uuuu U1 w bylllvulb. 

Formula (4.18) is expressed in terms of the symbol w that forms part of the ersatz 
Hamiltonian. Recall that w is related to U by (4.8). In practice, it is preferable to 
express our results in terms of the symbol U ,  because U is assumed to be known from 
the physical Hamiltonian of interest. The computation which implements passing from 
w to U in (4.18) is, however, somewhat subtle; one cannot just naively substitute (4.8) 
as it stands. 'lb understand this, notice that (4.18) actually does not require w itself, 
but rather, arbitrary D and 6 derivatives of w, which are moreover finally evaluated 
on the geodesic path [ E ]  and at p = 0. Thus (4.8) must be used to relate arbitraly 
derivatives of w and U, evaluated in this way. 

.._̂A ..-. - z  
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From (4.8) it is clear that any 6 acting on w leads to a 6 acting on U. On 
the other hand, a spatial D acting on w may strike either of the two sources of 
sdependence in (4.8), thus leading to D + acting on U. Tbese nec- 
essary replacements of D and 6 are just consequences of the chain rule, and are 
valid for arbitrary-order derivatives since (EAt)-'g is I, p-independent Finally such 
derivatives of zu must be evaluated at ( Q , p )  = [Fk,O]. In summary, the relation 
implied by (4.8) in this way is 

(4.19) 

for arbitrary a, a' E W d .  
Clearly, the effect of using (4.19) in (4.18) will merely he to modify somewhat the 

quadratic differential operator in the exponent. The resulting Cormula in terms of U 
may be written 

(4.20~) 

in which the E ,  Ai-dependent differential operators are defined by 

bj, i(E) = E A ~ G ( E ~ , E I ) ( D ~ , D I )  i ( F j  - @ ( F j  > Fi))Dj ' 61 - ," ?nL\ 
(*.L"O, 

+ ( E A t ) - 1 ( 6 k ) z }  ' (4.20c) 

-i ( t i  > <j) jDl .  Dj +(tub, , - A - \ - l , S  \ U j , U I ,  S \ 

N 

C N ( ~  = {EAtG(tkr(k)(Dk)' + 2(tk - l l D k  ' 
k = l  

Formula (4.20) is analogous to (2.15), the main difference being that there are now 
l i n k  operators for j = 1 (loops), which are gathered in cN(F).  Another difference is 
that the quadratic operator b j , , ( < )  @ more elaborate than Sj,,(C) because it contains 
couplings of the type (D, D) and (D, D). The kth term of cN(E)  only depends on F k  
and so it may be grouped with u [ t k ,  g(z - y ) / ~ A l ]  in (4.20R). The standard cluster 
method is then again applicable to (4.20), and it results in the desired 1 " n e d  
cluster expansion of the configuration function for Hamiltonian (1.3), 

m 

(4.21~) 

(4.21b) 
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The summation over n originates from a power-series expansion of exp{(h/2i)cj(E)}. 
Expansion (4.21) is equivalent to the one Barvinsky and Osborn [13] have recently 

obtained by a derivation somewhat different from the one presented here. The present 
derivation, while not the shortest route to  (4.21), does answer the natural question 
about the possibility of resumming the transport result (4.10), and it additionally 
serves to check the correctness and mutual consistency of (4.10) and the result of 
[13]. The first proof of equivalence between these two expansions was found by 

Not all of the physical parameter dependence is explicitly visible in (4.21) since 
bp and c, depend on 6 and At. It is possible to modify (4.21) in this regard by 
rescaling and translating the momentum variable of symbol v ( t , z , p ) .  In doing so 
the kind of arguments leading to (4.19) should be used. Such an improved version 
of (4.21) will not be displayed or discussed further here; the details may be found in 

If the perturbation v ( t , z )  is momentum-independent, one can set 6 = 0 in 
(4.20). The link and loop operators, b,,: and c N ,  then reduce to their pure spatial 
derivative terms involving the Green function G, and so (4.21) is completely consistent 
with the previous work of [2]. 

3aF;hQ [29] a.ifi:.g the a!.!te:natke EeThG& of [S). 

~ 3 1 .  

5. Concluding remarks 

While previous connected graph expansion literature [13]  has been based on the 
Dyson series (301 representation of the quantum evolution operator, the results pre- 
sented here have been derived starting from the transport-type PDE obeyed by the 
quantity of interest This extends the known range of applicability of cluster methods, 
since transport PDES arising outside of quantum mechanical problems can obviously 
be treated using the same techniques. For example, in section 2 no essential role is 
played by h, and formal self-adjointness of h is not required. 

The particular type of transport differential structure considered here, namely the 
left-hand side of (l . l) ,  is a consequence of (i) considering the quantum propagator 
in the full configuration (i.e. (.I.. . Iy)) representation, and (ii) choosing the unper- 
LUIVCU I,aI,,,'L"IIIa.LI A I D  L" "C La,* L L C C  " L l C  ('A,. ,, -pa.,,a,.p Ln.C.,C '.11".L.yL'".,U '.I., 

not essential. It is possible to give parallel treatments for other quantum represen- 
tations, such as mixed configuration-momentum (e.g. (.I.. . I p ) )  representations, or 
the phase-space representation of Wigner-Weyl [31-331. The case of a non-laplacian 
unpermrbed Hamiltonian has not yet been considered in detail, but it evidently will 
lead to modified characteristic cuwes Q ( T )  which are unperturbed classical paths, re- 
placing (1.5). Another avenue of extension involves replacing the configuration space 
Rd with a different manifold. In [3] connected graph propagator expansions were 
found (in the coordinate and Wigner-Weyl representations) for systems on tori with 
scalar potentials. 

The cluster expansion method possesses remarkable stability features. First of 
all, it was seen in section 4 that a cluster expansion survives after the resummation 
process. Secondly, suppose the electromagnetic problem were treated by the methods 
of section 4. A cluster expansion of F = eJ/IhT would resulc with an ersatz 
Hamiltonian given by (4.8)-(4.9) using the perturbation symbol (cf (1.3), (3.2)) 

..... knrl U"...:l+..r:nl U ... .hn C.n- -..- I :  a .1 , nnlnr:nn\ TuPcn n..,.mnt:n". 

v ( t , z , p )  = - e ( a ( z , t ) , p )  + +((a)z + ih(V,a)) + v ( z , t ) .  
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Evidently this expansion of F would not be manifestly gauge-covariant, nor would 
L j  a ~ j .  On the other hand as section 3 shows, after eJ l ih  is factored out the 
residual function T still possesses a cluster expansion. Interesting questions can 
therefore be posed concerning the inter-relation and consistency between these F 
and T expansions, the possibility of extracting further factors from T ,  and the widest 
possible setting admitting this type of stability. 

It is of interest to compare the present results with other literature related to 
propagator expansions involving graphs. Often such literature is concerned with the 
heat kernel (zle-PHly), where p is the inverse temperature, rather than with the 
evolution kernel K. The correspondence between the two kernels on a formal level 
is simply obtained by replacing p with iAt/li. (It should be noted, however, that 
on an analytically rigorous level the heat formalism has the disadvantage that .-OH 
does not exist as a bounded operator when the metric tensor is indefinite.) Some of 
the available graph expansion literature, e.g. [34, 351, studies the familiar short-time 
series [ l l ,  12, 36381 

m 

and develops systematic procedures for computing the a j ( z ,  y) coefficient functions. 
However, closed form solutions for a general a, are not obtained. One advantage of 
exponential representations like (1.7) is that the coefficients are generally simpler than 
the ones in a simple power series like (5.1). The latter are described by disconnected 
graphs which arise through a cumulant expansion [39] of the exponentiated connected 
graph series. 

A functional integral method of obtaining exponentiated heat kernel expansions 
has been developed by Roekaerts and collaborators [4&42]. This work considers 
systems with external electromagnetic fields, and admits the possibility of representing 
expansion coefficients with diagrams. (An earlier work [43] considered the WKB 
expansion for arbitrary Hamiltonians, without the introduction of diagrams.) Again, 
however, a closed symbol calculus determining arbitrary coefficients is not found. 
Moreover, the diagrams employed have a considerably more intricate structure than 
just clusters, and the coefficient formulae are not naturally expressed in terms of the 
Lorentz force. Since the heat problem with its static Hamiltonian is considered, the 
widest possible ( d  + 1)-dimensional gauge transformation is not admitted. 

The connected graph representations derived in this paper can reveal the ‘multi- 
scale’ behaviour of the propagator by simultaneously displaying its dependence upon 
a variety of physical parameters, such as E, At ,  h or field coupling constants. These 
exact results provide a platform for computing explicil formulae (e.g. (3.14)-(3.16), 
(3.18)) for the coefficients of expansions in any of these variables. The validity of such 
expansions can be considered from both a mathematical and a practical perspective. 
Logically, the mathematical validity is the primary one, because without it there is 
nothing which can be applied to specific problems. Nevertheless, intuitive under- 
standing about the utility of possible expansions is important. There is a pervasive 
interplay between these two aspects. 

Mathematically, the graphical representation may be exactly valid in some region 
of the propagator’s variables: the infinite graphical series may converge (appropri- 
ately) to a fundamental solution of the SchrOdinger PDE. For example, for the d- 
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dimensional harmonic oscillator this series is [l-31 uniformly convergent in z, y if 
A t  is less than half the oscillator period (i.e. within caustics). Only for relatively 
trivial Hamiltonians can the series be summed in closed form; generally one looks to 
retain only a subclass of all the graphs and thereby to obtain an asymptotic expansion. 
For example, an analysis [14, 151 of the electromagnetic system (3.2) shows that its 
propagator possesses asymptotic expansions with error proportional to if the 
external fields support smooth bounded derivatives to some order which increases 
with N .  

The expected range of practical validity of a particular formal asymptotic expan- 
sion can be approached in two stages. On the simplest level, a dimensional analysis of 
the SchrOdinger equation can be performed with respect to the independent expan- 
sion parameter in question. (For such a study of the small e, At,  h and charge limits 
for the electromagnetic problem, see section 5c of [9]. See also section 5 of [SI.) On 
a more detailed level, one can examine a particular class of expansion coefficients and 
determine conditions under which they will be small, and will thus sum to a candidate 
first neglected term of an asymptotic expansion. 

The number of possible expansions extractable from the general results in sec- 
tion 2 is large, and every possible variant cannot be commented upon here. As 
an illustration, let us summarize the practical limitations and virtues of the t 1 0 
propagator expansion found in section 3. It is a generalization [20] of the classic 
Wigner-Kirkwood [31, 441 (p  1 0) heat kernel expansion. The applicability of this 
expansion only for limited time displacements A t  is consistent with its single-term 
form, IC = KO exp( J / i h  + Cj L j ) ,  which may be viewed as a small-e re-expansion 
[9, 201 of the short-time WKB approximation. (For longer times (beyond caustics) the 
WKB ansatz involves a sum of terms over the multiple interacting classical trajectories 
from y , s  to z,t.) This restriction on At  prevents the approximation from being 
used to compute infinite-time properties such as bound state energies. Similarly, 
quantum mechanical problems in which fixed energies are inherent, e.g. those con- 
cerned with tunnelling through turning points into classically inaccessible regions, are 
not addressable with the evolution kernel for small times. Despite this limitation, the 
small-time propagator is useful, for example, in the quantum field theoretic renor- 
malization programme [45] of Schwinger-DeWitt. It is used to generate, via integral 
transforms in 1, asymptotic expansions for quantities derived from H, such as the 
Feynman propagator and the effective Lagrangian. 

The c 1 0 expansion is a (gauge invariant) derivative expansion, and as such 
it is expected to be accurate when the potential fields are slowly varying (even if 
the potentials are large). This is because all occurrences of undifferentiated fields 
are completely summed in the exponential gauge-phase eJIin, cf (3.5~). AI1 higher 
e-expansion coefficients L j  depend only on derivatives of the potentials; specifically 
(3.8)-(3.11) show that Lj is constructed from the Lorentz force S l  (and its deriva- 
tives), where S7 contains only derivatives of the potential fields a,  U. Therefore L j  can 
be small if the fields are slowly varying. The small-t expansion has a significant practi- 
cal advantage relative to the short-time WKB expansion. The latter’s coefficients, such 
as the action S, are functionals of the fully interacting classical trajectory satisfying 
two-point boundary conditions. Such boundary value problems are non-trivial-the 
trajectory is generally not available in closed form. The e 1 0 expansion, by contrast, 
is built around the free (geodesic) trajectories r(C; z, y) which are (in Kid)  extremely 
simple and always available. Moreover, as indicated at the end of section 3, the 
graphical representation can be used as a source of formulae for the action. These 
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provide a point of departure for rigorous studies of the classical mechanics [26], or 
of the WKB asymptotics [27]. 
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Appendix 

Here a general integrand-symmetry theorem will be proved. Special cases of this 
result were used in section 2. Specifically, the type of integrand symmetrization 
procedure which allows passing from (2.12) to (2.15) is essential in all derivations 
leading to an exponential cluster expansion. In addition, the ability to finally express 
the cluster coefficients L j  in terms of an ordered integration (cf (2.19)) is a practical 
convenience. After the proof of the theorem, its application in these two situations 
will be sketched. 

Let us begin with some notation, definitions and assumptions which will be used 
in the theorem. For n, m, N 2 1 let 

v, : (W" x W m ) N  - c 
be a smooth function which is symmetric under any permutation of its N arguments. 
Specifically, if ( z i ,  ri )  E W" x Wm for i E N, and U E S, (the group of permutations 
of N), then 

VN(z,,i? r,,, 3 . .  ., zoN 3 1 = V N ( Z ~  9 71 t . .  ., ZN 3 7,). (AI) 
Such function arguments will occur frequently so it is helpful to employ the Cartesian 
product notation 

N 

k = l  
x Yk-(Y,,Y,  ,..., YN) .  

The gradient of V, on its j t h  W"-vector argument is denoted by Dj: 

Assume the existence of paths Z : I - R" and t : I - Wm. For i , j  E N 
and E ,  E' E I, assume given a formal differential operator f ( E ,  E ' ;  Di, IDj) which is 
symmetric under the interchange of both pairs of arguments simultaneously, 

f(E, €'; Di 9 Dj) = f(€', E ;  Dj 1 Di). (A.2) 

No assumption is made about the effect of E - E' or DJi ti ID; separately. Note that 
the D's commute; this will also be assumed true for the f's. 
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For the purposes of this appendix, let us adopt the following definitions. A graph 
is a symmetric map G : A2 - W. The edge set E( C) of a graph C is the set of 
unordered pairs oi = { i , j )  c N such that G ( a )  = G ( i , j )  2 1. 

This definition of graphs admits loops [ C ( j , j )  2 11, and multiple edges 
[ G ( i , j )  2 21. However, the edge set does not contain repetitions of t h e  same 
edge. Given a graph G and a permutation U E S,, define the permuted graph 
u'G I Goo- ' .  That is, [ u * G ] ( i , j )  = G(u- ' z ,u - ' j ) .  Clearly o'G is a graph too. 

Finally, let F be a family of graphs with the property 

G E T  U E S, 9 u'G E F. (A31 

Theorem. Under the above assumptions, define for .$ E IN the integrand 

I(<) I c IC(<) (Ah)  
GEF 

zc(c) I [ IT I ( E ~ " , c " , ; ' ~ " , ~ " " ) G ( " ) ]  vN( k=l t ( 2 ( c k ) > T ( < k ) ) ) .  (k46) 
nEE(G)  

Then Z is invariant under any permutation of its argument: 

z ( c o D ) = Z ( < )  V C E I N ,  U E S N .  

Proof. Begin by computing the effect of the permutation D on any given term IC( .$)  
in the sum ( A h ) .  By definition 

z c ( c o u )  = n I(EU(,,],EU(,,):~,U,~,,)~'"'~N( N x ( 2 ( E o k ) % T ( < u k ) ) ) .  

k = l  
o E E ( G )  

Due to the symmetry of Yv, its variables can be unpermuted back into standard 
order provided each IDJ operator acting on it is properly relabelled: 

N x ( Z ( < u k ) , ? ( < e k ) ) )  = O o j v N (  c ( 2 ( c k ) ? T ( < k ) ) ) .  

" vN ( k = l  k = l  

This identity follows since Dl acts on the j t h  R"-argument of VN,  occupied by 
2 ( c , , ) ,  which after unpermuting the variables of V, occupies the ( u j ) t h  argument. 
so 
zG(<ou)  = U I ( . $ ~ ( ~ " ) , < ~ ( " U ' ; ~ ~ [ ~ ~ ) , ~ ~ ( " " ) ) ~ ' " ' ~ N (  N x ( Z ( c k ) > ' ( < k ) ) ) .  

k = l  
o E E ( G )  

(AS)  

Next, it is simple to check that the map a Y u[a] = { u i , u j )  is a bijection 
of E( G) onto E( U* G). Thus the product over edges in (AS) can be relabelled, 
yielding 

(A.6) n f ( E u ( A a - l o ) .  <.(".-1o,; D o ( A u - l & ? ) ,   lo)) G(u- 'o l ,  
PEE(o 'G)  
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Now consider the quantities a(Au- 'p)  and u ( V u - ' @ )  which have arisen. If @ = 
{ i , j } ,  fix i to be the vertex whose image under U - '  is the lesser, i.e. u-'i < u- ' j  
(the equality holds iff p is a loop). Then u ( A a - ' @ )  = o(u- ' i )  = i and similarly 
a(vu- 'p)  = j. Thus 

f ( < o ( A o - l @ ) >  < u ( V o - l p ) ;  Do(Ao-lp)3 ' r ( V u - 1 p ) )  = f ( c i 9 c j ;  'i>'j) 

= f ( E A 0  % t V p ;  D A p 3 D V P )  

where the ability to interchange both arguments of f is employed in the event that 
i # A@. This result, together with the fact that G(u-'@) = a*G(P) in the exponent 
of ( k 6 ) ,  implies 

z C ( t o u )  = rJ f ( E A p . E " p ; ~ n p , ~ " O ) a ' G ( U )  
P E  E ( 0 . G )  

x %( t = 1  c ( f (< t ) ,7 (ck) ) )  =z"'G(<)- 

This is the functamental behaviour of ZG under permutation. 
Consequently, under a permutation the sum 1 takes the form 

I(€ 0 cr) = c 1"G(€). 
G € F  

The final step of the proof is to re-order this sum. It is straightfoward to check that 
the map U* : G H U* C is a bijection of F with itself, and so one has 

Z(€ 0 a) = c Z H ( E )  = 1(€). 0 
HEF 

Let us now show how this theorem can be applied in section 2. TI begin with, 
some of the quantities must be identified more specifically. Choose R" to be the 
phase space RZd E R$ x (IF$)* and let Iw" be the time axis R:. The symmetric 
function V, will be taken to be the product of C-valued symbols H ,  

N 

(A71 vN( c ( z k y P  k 3 . k ) )  E f l H ( T k ? s > x k , Y , P k ) .  
k = l  

k = l  

Its path arguments should be the geodesics f([) = (y t ,  0)  and ? ( E )  = to. Because 
the N factors in the product ( k 7 )  commute, symmetry property (AI) is valid. 

Before considering the differential operators f, it is first necessary to characterize 
an appropriate generalization of the link operator Sa(<). Corresponding to the phase 
space splitting z = ( x , p )  E I d  x (Rd)* ,  the 2d-dimensional gradients decompose 
into IDj = ( D j  , Ei). The components of IDj will be indexed by a E % according to 

DI"' a < d  L f i ) ! a - d )  a > d. 
nnl"' = 
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A e ,  c'-parametrized bilinear function on the abstract algebra of D operators is de- 
fined by 

It is easily seen that B possesses the  symmey  property 

B f , ( @ i , D j )  = B ( , , p , , m i ) .  (A*) 

A careful check shows that the relation between B and the link operator S defined 
in (2.13) is 

si . (C \  = @(if j )B( , , ( ,p ,D; ) ,  
,I  \ - /  

valid for i, j E N and almost all 

must be shown, as stated after (2.14). that the integrand 

E I N .  
With this preparation, let us proceed with the first application of the theorem. It 

is a symmetric function of e. Comparing ( k 9 )  with ( k 4 )  indicates that if VN is 
identified with the product of symbols (A7), then one should choose 

f(F.E';mi,mj) = e w  ~ ( , c d ~ j , m j )  
which (AS) shows to have the required symmey  (A.2). Since there is no sum 
over graphs in (A.9), wherein the product over j < 1 should correspond to products 
over edges in a graph, choose 7 to be the family whose only member G is the 
complete graph without loops, i.e. G(j,1) = O ( j  # 1 ) .  Clearly G is invariant under 
permutations, hence F obeys property (A.3). With these choices of f and P the 
products in ( k 4 b )  and (k9 )  coincide: 

n f(E,,,~v,;D,,,D,,)Gc") = ~ I X P  Bc>,c,(m;,D~) = neS' , ' (O.  
o € E ( G )  j < l  , < I  

Applying the theorem proves the required'symmey of Z. 
The second application concerns (2.19), for which the  integrand is 

z(e) = &@!)-ls@(€)"] k = l  fJ f i [ € , , O I .  (kW 
GECj @ E E ( G )  [ l a = l  

Comparison with (A.4) shows that in this case the family P of graphs is non-trivial; 
it is C,. The clusters G are (0, 1)-valued, and under permutation produce another 
cluster so that properly (A.3) is valid. Upon choosing 

f(t, E'; D j , m ; )  E -1 + exp m j )  

and applying the theorem, the symmetty of integrand (A.10) follows immediately. 
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